
Convergence Acceleration of Iterative Methods for
Inverting Real Matrices Using Frobenius Norm

Minimization
Ajinkya Borle

CSEE Department
University of Maryland Baltimore County

Baltimore, Maryland 21250
Email: aborle1@umbc.edu

Samuel J. Lomonaco
CSEE Department

University of Maryland Baltimore County
Baltimore, Maryland 21250
Email: lomonaco@umbc.edu

Abstract—The Schulz-type methods for computing generalized
matrix inverses are a family of iterative methods that are popular
for their high order of convergence (≥ 2). We propose two new
scaled acceleration techniques for such type of iterative methods
for real matrices (based on Frobenius norm minimization) and
lay out efficient algorithms to implement these techniques. Test
results show one of our techniques to be most effective for dense
matrices but also works for sparse cases as well.

Index Terms—Acceleration, Iterative Methods, Scaling, Gener-
alized Inverses, Frobenius norm Minimization, Schulz Iteration,
Approximate Inverses, Hyperpower Sequence

I. INTRODUCTION

Generalized matrix inverses (which include inverses like
the regular inverse, the Moore-Penrose inverse, the Drazin
inverse and its varients, etc) have their applications in a
lot of varied domains: such as wireless communication, 3d
graphics, solving differential equations and many more [1]–
[3]. Recent work done to compute these inverses has focused
on the Schulz-type iterative methods that are attractive to
mathematicians for their high order of convergence [4]–[6].
Essentially it is :

Xi+1 = Xi +Xi(I −AXi) + · · ·+Xi(I −AXi)
ρ−1 (1)

Where ρ is the order of convergence that is desired (≥ 2). Xi

is the current approximation of the inverse and Xi+1 is the
next one (output of the ith iteration). The I here represents the
Identity matrix.

Upon putting ρ = 2 in the above equation, we get what is
known as the Schulz Equation [7], [8] which has a quadratic
convergence rate

Xi+1 = Xi(2I −AXi) (2)

The problem with this family of iterative methods is that if
someone were to implement them ‘as is’ for higher orders, It
would be a very inefficient method because of the number
of matrix multiplications involved in each step will be ρ.
The current work in this area focuses on finding efficient
ways to compute each iteration of these methods [5], [9]–[12]
(primarily by finding ways to reduce the number of matrix

multiplication calculations). These shall be discussed more in
the next section and later.

When it comes to techniques that help to accelerate the
convergence process, they exist mostly for the low-order
methods [11], [13] . In 2015, Stanimirovic et al. provided
multiple heuristics for the acceleration of the higher-order
methods [11].

What we propose is an adaptive scaled acceleration tech-
nique that aims to work on any of these methods, no matter
the convergence rate and independent of the starting point (i.e
the initial approximation of the matrix inverse X0). This is
done iteratively with the goal of reducing the frobenius norm
of the error per iteration.

We then outline algorithms that can be used to implement
this technique in a time efficient manner. Finally, we test our
technique against another acceleration technique for higher
order methods [11].

II. BACKGROUND AND RELATED WORK

The following are the terms that we’ll use in the rest of
the paper. We recommend the book ‘Generalized inverses :
theory and applications’ [14] for an in-depth look at the topics
covered here.

1) Input Matrix: We shall take Rm×n to be the set of all
m×n real rectangular matrices. Then A ∈ Rm×n is the matrix
that we want to find the generalized inverse for. I.e. it is the
inverse to be used as the input

2) Generalized inverse: A generalized inverse of matrix A
is a matrix G ∈ Rn×m such that it has the following property.

AGA = A (3)

Any matrix G that fulfills Eq. (3) would be termed as a
generalized inverse. Thus, it becomes a class consisting various
other inverses such as the Moore-Penrose inverse, the Drazin
inverse, the Regular Inverse etc.

3) Approximate inverse: We have a matrix X ∈ Rn×m that
is a generalized inverse with some error. Thus, from (3) we
can say that if

‖A−AGA‖ = 0 (4)

Then, we can say

‖A−AXA‖ = ε (5)
‖I −AX‖ = εright (6)
‖I −XA‖ = εleft (7)

Where ε,εleft and εright are the error tolerance and Eq. (6)
and (7) are for right and left approximate inverses respectively.

The Schulz-type methods use a starting approximate inverse
X0 in order to guarantee convergence governed by

X0 = µAT (8)

Where AT is the transpose of the input matrix and µ is an
appropriate scalar that is sufficiently small [15], [16]. For
example, we calculate µ for our numerical experiments by
µ = 1

‖A‖1‖A‖∞ [13]. It should be noted that there are other
ways to calculate µ [15], [16]

A. Related Work

A quadratically convergent method to compute approximate
matrix inverses was first laid out by Günther Schulz in 1933
[7] and Harold Hotelling [8] in 1943. Ben-Israel and Cohen
in 1966 [16] specified the conditions to formulate the initial
approximate matrix X0 .

In 1991, Pan and Schreiber published their seminal paper
[13] on this method with multiple contributions that include
: the most optimal initial approximate matrix X0, a scaled
acceleration technique that was proved to be optimal (but only
applicable to when ρ = 2), etc.

Around this time, mathematicians also discovered the larger
family of methods that calculate generalized matrix inverses
with a high order of convergence (≥ 2) [4]–[6]. This has
lead to people in recent years creating more efficient ways to
compute such methods. In 2013 Gonzales et al. wrote a paper
[17] in which they reduced the error in a real approximate
inverse using frobenius norm minimization. A part of their
work bears some resemblance to how we find the scaling
parameter for our first technique (although derived differently).
However, their work is in pure theoretical domain and didn’t
consider it from an acceleration technique point of view.

In 2015, Stanimirovic et al. [11] proposed various accelera-
tion heuristics that could work with the Schulz-type methods
of various orders of convergence. Our work has the same
motivation, but we have a different approach and a focus on
real matrices in particular.

III. THE ACCELERATION TECHNIQUES

Our objective here, broadly speaking, is to try to minimize
the error in the approximate inverse that is produced iteratively.
The way we do this to have a scalar value be multiplied to
either the end result of the ith iteration’s approximate inverse
Xi+1 , or to the difference between Xi+1 and Xi. Thus, we
can scale on the iterate Xi+1 with a scalar ψi+1, such that,

X ′i+1 = ψi+1Xi (9)
‖A−AX ′i+1A‖F ≤ ‖A−AXi+1A‖F (10)

Where F denotes the Frobenius norm. Or we can scale on the
difference between two successive iterates ∆i+1 with scalar
ωi+1, such that

∆i+1 = Xi+1 −Xi (11)
X∗i+1 = Xi + ωi+1∆i+1 (12)

‖A−AX∗i+1A‖F ≤ ‖A−AXi+1A‖F (13)

We can also apply (9) and (12) for other more specific types
of generalized inverses. Eg : For regular/right inverses :

‖I −AX ′i+1‖F ≤ ‖I −AXi+1‖F (14)
and ‖I −AX∗i+1‖F ≤ ‖I −AXi+1‖F (15)

For left inverses

‖I −X ′i+1A‖F ≤ ‖I −Xi+1A‖F (16)
and ‖I −X∗i+1A‖F ≤ ‖I −Xi+1A‖F (17)

In the next subsections, we’ll see how to calculate the values
of ψi+1 and ωi+1.

A. Technique 1 : Scaling on the iterate
(Scale on X)

We shall first focus on computing ψi+1 for the case of
right/regular inverses and then generalize it for others. Here
A is a m×n Matrix of real values and X is a n×m matrix.
If m = n and A is non-singular, then we arrive at the special
case of the right inverse being a regular inverse as well. We
substitute Eq. (9) in (14) and square it to get , we get

‖I − ψi+1AXi+1‖2F ≤ ‖I −AXi+1‖2F (18)

This shall help us simplify some calculations in the future.
Now let us define Yi+1, an m×m matrix, as

Yi+1 = AXi+1 (19)

such that, ‖I − ψi+1Yi+1‖2F ≤ ‖I −AXi+1‖2F (20)

First, we can see that I −ψi+1Y yields us something like the
below

I − ψi+1Yi+1 =

1− ψi+1y

(i+1)
11 · · · −ψi+1y

(i+1)
1m

−ψi+1y
(i+1)
21 · · · −ψi+1y

(i+1)
2m

... · · ·
...

−ψi+1y
(i+1)
m1 . . . 1− ψi+1y

(i+1)
mm

Denoting the matrices in their elemental forms, we get

Yi+1 = (y(i+1)
pq) (21)

I = (δpq) (22)

Where p and q both range from 1 to m (no. of max rows) and
δpq refers to the Kronecker delta here.

Using notations from Eq. (21) and (22), we calculate the
Frobenius norm square

‖I − ψi+1Yi+1‖2F =

m∑
p=1

m∑
q=1

(δpq − ψi+1y
(i+1)
pq)2 (23)

It is crucial to point out that because we are dealing with real
numbers, the absolute squares (calculated by the Frobenius
Norm) equals to just computing the squares (i.e. you needn’t
take the absolute value).
Simplifying the Kronecker deltas, we get

‖I − ψi+1Yi+1‖2F =

m∑
p=1

(1 + ψ2
i+1y

(i+1)
2

pp − 2ψi+1y
(i+1)
pp)

+

m∑
p=1

m∑
q=1

p 6=q(ψ
2
i+1y

(i+1)
2

pq)

(24)

We can rearrange this equation in the form of a quadratic
function with ψi+1 as the unknown

‖I − ψi+1Yi+1‖2F = ψ2
i+1

m∑
p=1

m∑
q=1

y
(i+1)

2
pq

− 2ψi+1

m∑
i=1

y(i+1)
pp +

m∑
p=1

1

(25)

Thus if we consider

‖I − ψi+1Yi+1‖2F = f(ψi+1)

= αi+1ψ
2
i+1 + βi+1ψi+1 + γi+1

(26)

αi+1 =

m∑
p=1

m∑
q=1

y
(i+1)

2
pq (27)

βi+1 = −2

m∑
p=1

y(i+1)
pp = −2Tr(Yi+1) (28)

γi+1 =

m∑
p=1

1 = m (29)

Then the values of f(ψi+1) and ψi+1 (for which f(ψi+1) is
the minimum) are given by the first derivative of the quadratic
function. Alternatively the quadratic function can be thought
of as a vertical concave-upwards parabola for which we find
the coordinates of the vertex

f(ψi+1) = γi+1 −
β2
i+1

4αi+1
(30)

ψi+1 = − βi+1

2αi+1
(31)

1) Left inverse special case: As for finding ψi+1 for the
left inverse, the main approach remains the same except for a
few things. We redefine Eq. (19) and (20) as

Yi+1 = Xi+1A (32)

such that, ‖I − ψi+1Yi+1‖2F ≤ ‖I −Xi+1A‖2F (33)

Where Yi+1 is a n × n matrix. From this point on, the
derivation for the values of ψi+1 and the reduced Frobenius
norm square is the same as for the right inverse case and we
would use Eq. (30) and (31) here as well.

2) General inverse case: Combining Eq. (9) and (10) and
squaring it, we get

‖A− ψi+1AXi+1A‖2F ≤ ‖A−AXi+1A‖2F (34)

We define Yi+1 as a m× n matrix (same dimensions as A)

Yi+1 = AXi+1A (35)
such that, ‖A− ψi+1Yi+1‖F ≤ ‖A−AXi+1A‖F (36)

Expanding A− ψi+1Y , we get

A− ψi+1Yi+1 =
a11 − ψi+1y

(i+1)
11 · · · a1n − ψi+1y

(i+1)
1n

a21 − ψi+1y
(i+1)
21 · · · a2n − ψi+1y

(i+1)
2n

... . . .
...

−am1 − ψi+1y
(i+1)
m1 · · · amn − ψi+1y

(i+1)
mn

Denoting A in its elemental form,

A = (apq) (37)

Where p ranges from 1 to m and q ranges from 1 to n. Just
like with Eq. (23), we can write out the Frobenius norm square
of A− ψi+1Yi+1 as

‖A− ψi+1Yi+1‖2F =
m∑
p=1

n∑
q=1

(a2pq + ψ2
i+1y

(i+1)2
pq − 2apqψi+1y

(i+1)
pq)

(38)

Rewriting Eq. (26) for the general case, we get

f(ψi+1) = αi+1ψ
2
i+1 + βi+1ψi+1 + γi+1 (39)

αi+1 =

m∑
p=1

n∑
q=1

y
(i+1)

2
pq (40)

βi+1 = −2

m∑
p=1

n∑
q=1

y(i+1)
pq apq (41)

γi+1 =

m∑
p=1

n∑
q=1

a2pq (42)

And the values for f(ψi+1) and ψi+1 can be calculated by
putting the above parameters in Eq. (30) and (31)

B. Technique 2 : Scaling on the difference between iterates
(Scale on ∆)

Here, we do not scale on the iterate itself, but the difference
between two successive iterates, as given by Eq. (11) and (12).
As with the previous section, we shall start with finding ωi+1

for right/regular inverses
Substituting Eq. (12) in Eq. (15) and squaring it

‖I −A(Xi + ωi+1∆i+1)‖2F ≤ ‖I −AXi+1‖2F (43)

Now, Let us define Zi+1 as a m×m matrix

Zi+1 = A∆i+1 (44)

Zi+1 = (z(i+1)
pq) (45)

Such that by combining Eq. (44),(19) and (12), we get

Y ∗i+1 = Yi + ωi+1Zi+1 (46)

‖I − (Yi + ωi+1Zi+1)‖2F ≤ ‖I −AXi+1‖2F (47)

We now calculate Eq. (43) as

‖I − (Yi + ωi+1Zi+1)‖2F =
m∑
p=1

m∑
q=1

(δpq − y(i)pq − ωi+1zpq)
2 (48)

Expanding it and using the algebraic identity for (a + b +
c)2, we can get the Frobenius Norm square in the form of a
quadratic function with ωi+1 as the unknown

‖I − (Yi + ωi+1Zi+1)‖2F = f(ωi+1)

= αi+1ω
2
i+1 + βi+1ωi+1 + γi+1

(49)

αi+1 =

m∑
p=1

m∑
q=1

z
(i+1)

2
pq (50)

βi+1 = 2(

m∑
p=1

m∑
q=1

y(i)pq z
(i+1)
pq − Tr(Z)) (51)

γi+1 =

m∑
p=1

m∑
q=1

y
(i)
2
pq +m− 2Tr(Y) (52)

Modifying Eq. (30) and (31) for the current case, we can get
the reduced frobenius norm square and the acceleration scalar
by f(ωi+1) = γi+1 −

β2
i+1

4αi+1
and ωi+1 = − βi+1

2αi+1
respectively.

1) Left inverse special case: As with Scaling on the iterate
scenario. Here we use Yi = XiA and define Z as

Z = ∆i+1A (53)

instead of A∆i+1. The rest of the formulation would remain
the same and Eq. (50) (51) and (52) would yield us the
necessary values to find f(ωi+1) and ωi+1

2) General inverse case: As with the General inverse case
for the previous technique, we need to define Zi+1 in a manner
compliant with Eq. (13)

Zi+1 = A∆i+1A (54)

Modifying Eq. (48) for the general case

‖A− (Yi + ωi+1Zi+1)‖2F =
m∑
p=1

n∑
q=1

(apq − y(i)pq − ωi+1zpq)
2 (55)

Expanding Eq. (55) for finding αi+1, βi+1 and γi+1

αi+1 =

m∑
p=1

n∑
q=1

z
(i+1)

2
pq (56)

βi+1 = 2(

m∑
p=1

n∑
q=1

y(i)pq z
(i+1)
pq −

m∑
p=1

n∑
q=1

apqz
(i+1)
pq) (57)

γi+1 =

m∑
p=1

n∑
q=1

(apq − y(i)pq)2 (58)

IV. EFFICIENT COMPUTATION OF THE TECHNIQUES

A. Methods used

Before we begin with the algorithms that compute the
acceleration techniques. We shall first lay out some of the
Schulz-type methods that they can be used with. In the next
section, we would be conducting some numerical experiments
with these methods.

H3, a third order convergent method [10], is given by

Xi+1 = Xi(3I −AXi(3I −AXi)) (59)

PM 9 (P9 for short), a ninth order convergent method was laid
out by Stanimirovic et al. [11]

T
(i)
1 = AXi

T
(i)
2 = 3I + T

(i)
1 (−3I + T

(i)
1)

T
(i)
3 = T

(i)
1 T

(i)
2

Xi+1 = XiT
(i)
2 (−3I + T

(i)
3 (−3I + T

(i)
3)) (60)

And finally PM 11(P11 for short), which is a eleventh order
convergent method was also outlined in the same paper as

Ri = I −AXi

Xi+1 =Xi[I + (Ri +R2
i)(I + c ∗R2

i +R4
i)

(I + d ∗R2
i +R4

i)]
(61)

where c = 0.5(1−
√

5) and d = 0.5(1−
√

5).

The way these methods are crafted makes it easier for
us to find the α, β and γ for the right inverse. We shall
re-interpret the above methods such that it is easier to find
these acceleration parameters for the left-inverse without any
additional matrix inverse.

Thus H3 becomes :

Xi+1 = (3I − (3I −XiA)XiA)Xi (62)

P9 becomes

T
(i)
1 = XiA

T
(i)
2 = 3I + (−3I + T

(i)
1)T

(i)
1

T
(i)
3 = T

(i)
2 T

(i)
1

Xi+1 = (−3I + (−3I + T
(i)
3)T

(i)
3)T

(i)
2 Xi (63)

As for P11, the only change is that Ri = I−XiA, the second
part of the method remains the same.

When it comes to finding the acceleration parameters in
the case of the general inverse, we’ll need an additional
multiplication per iteration to get Yi+1 = AXi+1A

B. Stopping condition(s)

Here we shall discuss our choice of the stopping condition
for the Schulz-type method along with our acceleration tech-
nique. In 2015, Stanimirovic et al. gave the following stable
stopping condition

‖Xi+1 −Xi‖
ρiµ

< ε1 (64)

admin
Sticky Note
z^(i+1)

Where ε1 is a chosen tolerance of the difference between two
successive iterates. Our acceleration techniques are focused on
reducing the error in the approx. inverse X such that X is ever
more closer to the ideal inverse. Thus the stopping condition
that we choose is

left inverse, ‖I −Xi+1A‖ < ε2 (65)
right inverse, ‖I −AXi+1‖ < ε2 (66)

general inverse, ‖A−AXi+1A‖ < ε2 (67)

Where ε2 is the error tolerance in the approximate inverse.
The idea behind these stopping conditions is that it guarantees
us an approximate inverse that is below a set error threshold.
The condition given in Eq. (64) is more optimized for giving a
stopping point when the error difference between two iterates
goes below ε1. It however, does not focus on demanding a
particular error tolerance in the approximate inverse X .

C. Algorithms

Here, we shall suggest algorithms that can calculate the
acceleration parameters in an efficient manner. For the sake of
brevity, we shall consider the right inverse case and mention
in the discussion about how to modify it for the left inverse
and the general case.

1: procedure SCALE ON X ACC.(A)
2: Compute the scalar µ as governed by [13], [15], [16]
3: Compute the initial approximation X = µ ∗AT
4: loop
5: Y = AX
6: if not first iteration then
7: if ‖I − Y ‖ < ε2 then
8: Break
9: end if

10: Calculate α and β by using Eq. (27) and (28)
11: Calculate ψ = − β

2α
12: Compute X = ψX and Y = ψY
13: end if
14: Compute the next X by Eq. (1) or one of it’s

specific methods such as Eq. (59), (60) or (61).
15: end loop
16: return X . Final approximate inverse
17: end procedure
We see here that the iterate Xi+1 calculated as a result of the ith

iteration has its acceleration parameters calculated and applied
in the first part of the (i+1)th iteration. The algorithm also
computes Y = AX before the stopping condition and would
be used in the calculation of the next X . Thus the algorithm
in its entire runtime does only one extra matrix multiplication.

If we were to compute the left inverse, we’d put Eq. (65)
for the stopping condition, define Y = XA and use either
(62), (63) or (61) for the iteration. The general inverse case
would just change the stopping condition to (67) and the
calculation of Y would be Ytemp = AX , Y = YtempA. The
methods to be used for the actual iteration are same as in the
right inverse case.

The cost of calculating the acceleration parameters for the
right/left/regular inverse case is a total of 2n2 + n. Whereas
for the general case it is 4n2. Now, we present an algorithm
for the second acceleration technique,

1: procedure SCALE ON ∆ ACC.(A)
2: Compute the scalar µ as governed by [13], [15], [16]
3: Compute the initial approximation X = µ ∗AT
4: loop
5:
6: if first iteration then
7: Y = AX
8: else
9: Y = Y + ωZ

10: if ‖I − Y ‖ < ε2 then
11: Break
12: end if
13: end if
14: Compute Xtemp by Eq. (1) or one of it’s specific

methods such as Eq. (59), (60) or (61).
15: ∆ = Xtemp −X
16: Z = A∆
17: Calculate α and β by using Eq. (50) and (51)
18: Calculate ω = − β

2α
19: Compute the new approx. inverse X = X + ω∆
20: end loop
21: return X . Final approximate inverse
22: end procedure
The challenge with the second acceleration technique is the
need to calculate the Matrix Z for finding the acceleration
parameters. This could mean doing an additional matrix mul-
tiplication per iteration. However, this is alleviated by then
computing Y = Y + ωZ instead of Y = AX for all the
iterations but the first. Hence, this means instead of doing an
operation in the scale of n2.3729 (via coppersmith-winograd
[18], other matrix multiplication algorithms are even more
expensive) we are doing an additional 4n2 per iteration for
the improved X and Y (n2.3729 > 4n2 for n ≥ 43).

The left inverse case would require us to start the first
iteration with Y = XA and (65) as the stopping condion.
Z would need to be calculated as Z = ∆A per iteration. The
actual iterative methods would be calculated by (62), (63) or
Eq. (61).

For the general inverse case, the first iteration will require
Y to be calculated by Ytemp = AX , Y = YtempA, while the
rest of the iterations it would be Ytemp = Ytemp+ωZtemp and
Y = Y +ωZ (Ztemp is an intermediate matrix). Each iteration
would require the matrix Z to be calculated by Ztemp = A∆,
Z = ZtempA. Finally, the stopping condition (67) is to be
used here.

In the case of this particular acceleration technique, the cost
of calculating the acceleration parameters is higher than the
last one. It is about 4n2 + n for the right/left/regular inverse
case and 6n2 for the general case. However, the next section
will show us that the benefits outweigh the costs for the most
part.

V. NUMERICAL EXPERIMENTS

Here we shall display the results of three experiments we
did for calculating the Moore-Penrose inverse in order to see
the performance of one of our acceleration technique (Scale
on ∆) as compared to the baseline (i.e. no acceleration at all)
and the second heuristic mentioned and tested in [11]. It is
important to note that Examples 1 and 2 have been calculated
in MATLABTM and deal with dense matrices. Example 3 uses
MATHEMATICATM because in our experience, it handled
sparse matrices better for our requirements. Another reason
to use MATHEMATICATM for Example 3 is because we are
extending one of the experiments laid out in [11] and they
used MATHEMATICATM for it as well (example 2 in [11])
with its δ parameter set to 0.1.

We chose µ = 1
‖A‖1‖A‖∞ as the starting scalar and

ε2 = 10−10 as the error tolerance for all the experiments.
We show the results in terms of Number of Iterations required
to converge to ε2 and the runtime (avg. of 3 runs) to do so. We
use ‘b/l’ to denote using the Schulz-type method without any
acceleration and ‘∆’ to denote our ‘Scale on ∆’ technique.
All the stopping conditions that we have used are computed
using the Frobenius norm.

The computer that we observed these results was a laptop
with WindowsTM 8.1 (64 bit) OS, 8 GB of RAM and a 3rd

gen Intel i7 Processor.
1) Example 1: Here we take 5 randomly generated uniform

distribution matrices and 5 normal distribution matrices (also
randomly generated) of varying dimensions. The main con-
straint here is that m < n.

TABLE I
ITERATIONS TO CONVERGE FOR EX. 1 : B/L V. OURS(∆)

Mat. H2(b/l) H2(∆) H3(b/l) H3(∆) P9(b/l) P9(∆) P11(b/l) P11(∆)
U1 23 12 15 9 8 6 7 5
U2 24 12 15 9 8 6 7 5
U3 25 13 16 9 8 6 7 6
U4 25 13 16 9 8 6 7 6
U5 25 13 16 9 8 6 8 6
N1 23 12 15 9 8 6 7 5
N2 23 17 15 10 8 6 7 5
N3 24 12 15 9 8 6 7 5
N4 24 13 15 9 8 6 7 6
N5 25 13 16 9 8 6 7 6

TABLE II
ITERATIONS TO CONVERGE FOR EX. 1 BY [11] HEURISTIC 2

Mat. H2 H3 P9 P11
U1 20 13 7 6
U2 20 13 7 6
U3 21 14 7 6
U4 21 14 7 6
U5 21 14 7 7
N1 20 13 7 6
N2 20 13 7 6
N3 20 13 7 6
N4 20 13 7 6
N5 21 14 7 6

TABLE III
RUNTIME (SECONDS) TAKEN FOR EX. 1: B/L V. OURS(∆)

Mat. H2(b/l) H2(∆) H3(b/l) H3(∆) P9(b/l) P9(∆) P11(b/l) P11(∆)
U1 2.3307 1.4960 2.1615 1.5747 2.1183 1.8113 1.4920 1.2907
U2 3.0037 1.9250 2.7169 1.8836 2.8350 2.2365 2.2138 1.6201
U3 3.6846 2.4024 3.6449 2.3328 3.3832 2.7295 2.7436 2.4150
U4 4.5419 2.9836 4.3671 2.8470 4.0648 3.1712 3.0872 2.5299
U5 5.7587 3.6123 5.3756 3.4263 4.7504 3.9572 4.7112 3.2193
N1 2.3622 1.5687 2.2206 1.5151 2.2470 1.8700 1.9259 1.5011
N2 3.0596 2.5753 2.8609 2.0443 2.7304 2.3058 2.4881 1.9142
N3 3.7756 2.1573 3.5621 2.2960 3.4267 2.7409 2.9623 2.2497
N4 4.5266 2.8257 3.9542 2.7534 4.2393 3.2946 3.4243 3.0658
N5 5.8408 3.5446 5.3896 3.5549 5.2444 4.1281 4.2435 3.9802

TABLE IV
RUNTIME (SECONDS) TAKEN FOR EX. 1 BY [11], HEURISTIC 2

Mat. H2 H3 P9 P11
U1 2.3763 2.126 2.0187 1.5504
U2 2.7905 2.526 2.3613 2.0642
U3 3.5829 3.285 3.0928 2.7263
U4 4.2266 4.332 4.1068 3.4059
U5 5.3595 4.877 4.7842 4.4300
N1 2.2854 2.098 2.1243 1.8413
N2 2.6597 2.624 2.5679 2.1480
N3 3.3143 3.235 3.0780 2.7779
N4 4.1404 3.778 3.8093 3.1261
N5 5.1205 4.974 4.6028 3.9628

All of the input matrices are dense with full rank. I.e. the
Moore-Penrose Inverse equals to Right inverse. We use (66)
as the stopping condition. The following commands were used
for the uniform distribution matrix generation :

rng(12345);
Uniform_Mat=20000*rand(rowsize,colsize)
-10000;

And for the normal distribution matrix generation :

rng(12345);
Normal_Mat=10000*randn(rowsize,colsize);

The dimensions of the Matrices used are as follows : U1
& N1 = (1000,1100), U2 & N2 = (1100,1200), U3 & N3
= (1200,1300), U4 & N4 = (1300,1400) and U5 & N5 =
(1400,1500).

For the most part, our acceleration technique (denoted by
∆ in the table) outperforms baseline case and the acceleration
heuristic given by [11] both in terms of iterations required and
the runtime of the method.

2) Example 2: In this example, we also randomly generate
uniform and normal distribution based dense matrices, How-
ever here we have m > n, as our generation constraint.

Being full rank but having more columns than rows, the
Moore-Penrose Inverse becomes equal to the Left Inverse.
We use (65) for the stopping condition. We used the same
instructions for the input matrix generation A but the only
difference is the seed that we use : rng(54321).

The dimensions of the Matrices used are as follows : U’1
& N’1 = (1100,1000), U’2 & N’2 = (1200,1100), U’3 & N’3

TABLE V
ITERATIONS TO CONVERGE FOR EX. 2 : B/L V. OURS(∆)

Mat. H2(b/l) H2(∆) H3(b/l) H3(∆) P9(b/l) P9(∆) P11(b/l) P11(∆)
U’1 23 12 15 9 8 6 7 5
U’2 24 15 15 10 8 7 7 6
U’3 24 13 15 9 8 6 7 6
U’4 25 13 16 9 8 6 7 6
U’5 25 13 16 9 8 6 8 6
N’1 23 12 15 9 8 6 7 5
N’2 24 12 15 9 8 6 7 5
N’3 24 13 15 9 8 6 7 6
N’4 24 13 15 9 8 6 7 6
N’5 25 13 16 9 8 6 8 6

TABLE VI
ITERATIONS TO CONVERGE FOR EX. 2 BY [11] HEURISTIC 2

Mat. H2 H3 P9 P11
U’1 19 13 7 6
U’2 20 13 7 6
U’3 20 13 7 6
U’4 21 14 7 6
U’5 21 14 7 7
N’1 19 13 7 6
N’2 20 13 7 6
N’3 20 13 7 6
N’4 20 13 7 6
N’5 21 14 7 7

= (1300,1200), U’4 & N’4 = (1400,1300) and U’5 & N’5 =
(1500,1400).

TABLE VII
RUNTIME (SECONDS) TAKEN FOR EXAMPLE 2: B/L V. OURS(∆)

Mat. H2(b/l) H2(∆) H3(b/l) H3(∆) P9(b/l) P9(∆) P11(b/l) P11(∆)
U’1 1.8893 1.0896 1.7295 1.0963 2.3075 1.8593 2.0000 1.5448
U’2 2.5705 1.6373 2.2499 1.6241 2.8979 2.6826 2.5338 2.26359
U’3 2.9834 1.7546 2.8420 1.7143 3.7101 2.8650 3.0393 2.7486
U’4 3.8972 2.2174 3.6081 2.0223 4.3327 3.4639 3.8288 3.2045
U’5 4.8264 2.5054 4.4665 2.4030 5.4248 4.0336 5.0953 3.9852
N’1 1.9412 1.1022 1.7496 1.1360 1.5680 1.2494 2.0845 1.4648
N’2 2.6222 1.3007 2.3358 1.3991 1.9667 1.5076 2.4826 1.9638
N’3 3.2528 1.8165 2.8593 1.6920 2.7501 2.1897 3.0628 2.8310
N’4 3.6637 2.0070 3.3516 1.9999 3.4127 2.5295 3.5749 3.3964
N’5 4.7498 2.6287 4.4893 2.5971 4.4924 2.9150 4.9497 4.0340

TABLE VIII
RUNTIME (SECONDS) TAKEN FOR EXAMPLE 2 BY [11], HEURISTIC 2

Mat. H2 H3 P9 P11
U’1 1.8106 1.8000 2.1192 1.8259
U’2 2.4346 2.1485 2.6234 2.2532
U’3 2.8245 2.6787 3.1062 2.5362
U’4 3.6417 3.3251 3.8772 3.2653
U’5 4.0719 3.8660 4.6057 4.6172
N’1 1.9517 1.6689 1.7232 1.7295
N’2 2.4150 2.0002 1.9790 2.1409
N’3 2.9650 2.6535 2.6257 2.7052
N’4 3.4541 3.0373 3.1733 3.2339
N’5 4.1158 3.9206 3.7189 4.5722

As with the previous results, we see again that our acceler-
ation technique is very competitive with the baseline method
as well as heuristic 2 of [11].

3) Example 3: Here we shall be testing with five sparse
matrices of size m× n = 10000× 11000 that have the same
format as that of [11]’s Example 1. It is important to note that
our matrices only contain real numbers, but the bands in which
they are present are same as in their paper. In other words,
these are not the same matrices as in [11] but are inspired
from it.

m = 10000; n = 11000; number = 5;
SeedRandom[12345];
B = Table[
SparseArray[{Band[{2000, -4000},{m, n}]
-> Random[], Band[{10, 6000}, {m, n}]->
{1.1, -Random[]}, Band[{-200, 9000}]->
-0.02, Band[{3500, -7000}] -> 0.1},
{m, n}, 0.], {l, 5}];

None of these five matrices are fully ranked so we go with
(67) as the stopping condition.

For the case of Sparse Matrices we can see that our
technique does not always provide an accelerated convergence
for all of the higher order methods in all of the cases.
Nonetheless, it does converge to an approximate matrix below
the error tolerance level. In the future, we’ll look to analyze the
particular kinds of sparse matrices our acceleration technique
is effective for.

TABLE IX
ITERATIONS TO CONVERGE FOR EX. 3 : B/L V. OURS(∆)

Mat. H2(b/l) H2(∆) H3(b/l) H3(∆) P9(b/l) P9(∆) P11(b/l) P11(∆)
M1 20 14 13 10 7 6 6 6
M2 31 19 20 13 10 7 9 7
M3 22 15 14 11 7 7 7 6
M4 20 14 13 10 7 6 6 6
M5 21 15 14 11 7 7 6 6

TABLE X
ITERATIONS TO CONVERGE FOR EX. 3 BY [11] HEURISTIC 2

Mat. H2 H3 P9 P11
M1 17 - - -
M2 28 - 10 -
M3 21 - 7 7
M4 - 13 7 6
M5 20 - 7 6

TABLE XI
RUNTIME (SECONDS) TAKEN FOR EXAMPLE 3: B/L V. OURS(∆)

Mat. H2(b/l) H2(∆) H3(b/l) H3(∆) P9(b/l) P9(∆) P11(b/l) P11(∆)
M1 0.8696 0.7168 0.6888 0.6514 0.5920 0.5643 0.5073 0.5773
M2 2.2499 1.2065 1.3879 0.7985 0.8222 0.6324 0.7582 0.6077
M3 1.1274 1.0053 0.9526 0.8646 0.7365 0.8085 0.7511 0.7238
M4 0.8532 0.7081 0.6808 0.6014 0.7785 0.5467 0.6874 0.7425
M5 0.8542 0.7511 0.7325 0.6768 0.5850 0.6451 0.5033 0.5627

While testing with the heuristic 2 given in [11] however, not all
of the test cases converged (marked with a ‘-’). It is important
to note that the tests they performed in their paper were with
complex matrices and not real ones.

TABLE XII
RUNTIME (SECONDS) TAKEN FOR EXAMPLE 3 BY [11], HEURISTIC 2

Mat. H2 H3 P9 P11
M1 0.7705 - - -
M2 1.6064 - 0.8409 -
M3 1.1898 - 0.7695 1.0740
M4 - 0.7381 0.6004 0.6841
M5 0.8829 - 0.5960 0.5223

VI. CONCLUSION

In this paper, we proposed two scaled acceleration tech-
niques for the Schulz-type methods for computing generalized
inverses. We then performed some numerical experiments
to compare our Scale on ∆ technique against the baseline
methods and a competing technique. We observed that this
technique is very particularly efficient for dense matrices but
also works for cases of sparse matrices as well. In future, it
would be interesting to see if our techniques can be refined
to work better with sparse matrices (at the moment it works
with about 70% of the cases we tested, by iterations). Another
possible future work would be to implement these techniques
in a parallel computing environment to reduce some of the
computational cost associated with these techniques.

ACKNOWLEDGMENT

The authors would like to thank their colleagues from
UMBC that gave valuable feedback regarding this work.

REFERENCES

[1] H. Lipfert, “Mimo ofdm space time coding–spatial multiplexing, in-
creasing performance and spectral efficiency in wireless systems, part i
technical basis (technical report),” Institut für Rundfunktechnik, 2007.

[2] I. V. Oseledets and E. E. Tyrtyshnikov, “Approximate inversion of
matrices in the process of solving a hypersingular integral equation,”
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, vol. 45,
no. 2, pp. 315–326, 2005.

[3] P. S. Stanimirović, S. Chountasis, D. Pappas, and I. Stojanović, “Re-
moval of blur in images based on least squares solutions,” Mathematical
Methods in the Applied Sciences, vol. 36, no. 17, pp. 2280–2296, 2013.

[4] J.-J. Climent, N. Thome, and Y. Wei, “A geometrical approach on
generalized inverses by neumann-type series,” Linear algebra and its
applications, vol. 332, pp. 533–540, 2001.

[5] F. Soleymani, P. S. Stanimirović, and F. K. Haghani, “On hyperpower
family of iterations for computing outer inverses possessing high effi-
ciencies,” Linear Algebra and its Applications, vol. 484, pp. 477–495,
2015.

[6] E. Stickel, “On a class of high order methods for inverting matrices,”
ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für
Angewandte Mathematik und Mechanik, vol. 67, no. 7, pp. 334–336,
1987.

[7] G. Schulz, “Iterative Berechung der reziproken matrix,” ZAMM-Journal
of Applied Mathematics and Mechanics/Zeitschrift für Angewandte
Mathematik und Mechanik, vol. 13, no. 1, pp. 57–59, 1933.

[8] H. Hotelling, “Some new methods in matrix calculation,” The Annals
of Mathematical Statistics, vol. 14, no. 1, pp. 1–34, 1943. [Online].
Available: http://www.jstor.org/stable/2235999

[9] F. K. Haghani and F. Soleymani, “A new high-order stable numerical
method for matrix inversion,” The Scientific World Journal, vol. 2014,
2014.

[10] H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and T.-X. Gu, “Chebyshev-
type methods and preconditioning techniques,” Applied Mathematics and
Computation, vol. 218, no. 2, pp. 260–270, 2011.

[11] P. S. Stanimirović, F. Soleymani, and F. K. Haghani, “Computing outer
inverses by scaled matrix iterations,” Journal of Computational and
Applied Mathematics, vol. 296, pp. 89–101, 2016.

[12] V. Pan, F. Soleymani, and L. Zhao, “Highly efficient computation of
generalized inverse of a matrix,” arXiv preprint arXiv:1604.07893, 2016.

[13] V. Pan and R. Schreiber, “An improved newton iteration for the general-
ized inverse of a matrix, with applications,” SIAM Journal on Scientific
and Statistical Computing, vol. 12, no. 5, pp. 1109–1130, 1991.

[14] A. Ben-Israel and T. N. Greville, Generalized inverses: theory and
applications. Springer Science & Business Media, 2003, vol. 15.

[15] A. Ben-Israel, “An iterative method for computing the generalized
inverse of an arbitrary matrix,” Mathematics of Computation, pp. 452–
455, 1965.

[16] A. Ben-Israel and D. Cohen, “On iterative computation of generalized
inverses and associated projections,” SIAM Journal on Numerical Anal-
ysis, vol. 3, no. 3, pp. 410–419, 1966.

[17] L. González and A. Suárez, “Improving approximate inverses based on
frobenius norm minimization,” Applied Mathematics and Computation,
vol. 219, no. 17, pp. 9363–9371, 2013.

[18] V. V. Williams, “Breaking the coppersmith-winograd barrier,” E-mail
address: jml@ math. tamu. edu, 2011.

http://www.jstor.org/stable/2235999

	Introduction
	Background and Related Work
	Input Matrix
	Generalized inverse
	Approximate inverse

	Related Work

	The acceleration techniques
	Technique 1 : Scaling on the iterate (Scale on X)
	Left inverse special case
	General inverse case

	Technique 2 : Scaling on the difference between iterates (Scale on)
	Left inverse special case
	General inverse case

	Efficient computation of the techniques
	Methods used
	Stopping condition(s)
	Algorithms

	Numerical experiments
	Example 1
	Example 2
	Example 3

	Conclusion
	References

